Innovative Stormwater Research in Western North Carolina

WNC Stormwater Summit February 22, 2017 Tim Ormond, P.E. HydroCycle Engineering

Terraced Wonders of the World

Terraced Wonders of the World

Longsheng, China

Set Willowinson

Source: Stalder

Banaue, Philippines

Source: E. Law

Innovative Stormwater Research

1) Steep Slope Bioretention Pilot Project

2) Stormwater Mycelium Filter Pilot Project

Mars Hill, NC

Source: visitnc.com

Summary

Project	Steep Slope	Stormwater Mycelium	
	Bioretention Pilot	Filter Pilot	
Goal	Test New Technology	Test New Technology	
Sponsor	Madison SWCD	Madison SWCD	
Grant Source	CWMTF	PRF	
Site	Mars Hill Town Hall	Madison Co Dairy Farm	
Site Type	Steep Slopes	Agricultural	
Stormwater Runoff	Urban	Agricultural	
Engineering Research	HydroCycle	HydroCycle	
College Research	Mars Hill University	Warren Wilson College/	
		AB Tech	

Steep Slope Bioretention Pilot Project

Why This Project?

Opportunity Bioretention -Proven Technology

<u>Need</u> Stormwater Mgmt for Steep Slopes

Research

Current Practice

>20 Criteria Manuals
Not for slopes above 20%
Special techniques needed

Ancient Terraced Systems

Wall Types

Wall Types

Wall Types

Comparison of Wall Types

Wall Type	Advantages	Disadvantages	
Timber/ Wood	 Low Cost Aesthetics Ease of construction 	• Durability	
Gabion	 Cost Permeable Ease of construction 	Aesthetics	
Sheet Pile	 Small size/width Maximize bioretention area 	 Cost for construction Impermeable Difficulty of installation for terraces 	
Segmental Block	 Aesthetics Ease of construction Semi-permeable Includes vegetated blocks 	 "Unnatural" appearance Need for geosynthetic reinforcement 	
Poured concrete	 Ease of construction Smaller width 	 Impermeable Aesthetics (unless decorative) 	

Design

Before Conditions

Site Topography

Conceptual Design

Site Hydrology

Comparison of Systems

Characteristic	Segmental Block Wall	Gabion Weep Wall
Retaining Wall Product	Cornerstone 100	Maccaferri Gabion
Average Site Slope	53%	36%
Depth of wall (ft)	1.0	3.0 (4.5 ft at base)
Number of Bioretention Terraces	4	4
Length of Bioretention Terraces (ft)	12	12
Width of Bioretention Terraces (ft)	5	5
Total Surface Area (ft ²)	240	240
Media Material	Stalite PermaTill	Stalite PermaTill
Media Depth (in)	24	24
Gravel Underdrain Layer Depth (in)	8	8
Intermediate Sand Layer Depth (in)	2	2
Mulch Layer Depth (in)	2	2
Total Filter Depth (in)	36	36
Average Ponding Depth (in)	4	4
Underdrain Pipe Diameter (in)	4	4
Geomembrane Liner	4 side walls and bottom	3 side walls and bottom

Segmental Block Wall

DISTANCE FROM CURB (FT)

Gabion Weep Wall

Construction

Planting Plan

ID	Scientific Name	Common Name	Height	Spread	Spacing	Bloom Time	Qty/ Cell	Total Qty
А	Asclepias tuberosa	Butterflyweed	10-24"	12-18"	15"	July	3	24
В	Baptisia australis	False Blue Indigo	36-48"	36-48"	36"	May - June	1	8
С	Coreopsis lanceolata	Lanceleaf Tickseed	12-24"	12-18"	15"	April - June	3	24
D	Phlox subulata	Moss Pinks	6"	6-24"	12"	April	6	48
E	Rudbeckia fulgida	Rudbeckia	24-36"	24-30"	24"	Aug - Oct	2	16
F	Sporobolus heterolepis	Prairie Dropseed	24-36"	24-36"	30"	Aug - Oct	6	48

Educational Signage

Monitoring

Monitoring Plan

Number of sampling events	12		
Number of events per month (avg)	2		
Minimum rainfall depth for event	~1 inch		
Process for sampling storm event	Monitor weather forecast and mobilize when runoff begins. Begin sampling when flow begins through system. Capture "first flush" into system as well as later samples (>15 min into storm event and every subsequent hour). Take effluent sample upon discharge.		
Number of sampling points on site	4 (2 influent and 2 effluent samples)		
Duplicate samples	Duplicate samples will be taken at all sampling points		
Flowrate measurement	Measure and record depth of flow above weirs, both influent and effluent weirs		
Rate for system flow-through	Record time at which inflow into system begins and time at which outflow from system begins to compute system flow-through rate.		
Primary parameters to test	TSS, nitrate, phosphate, temperature		
Secondary parameters to test	Biochemical oxygen demand (BOD), electrical conductivity		
Total sample bottles per event	12 (1.0 L each) [2 influent + 2 duplicates @ first flush + 2 influent + 2 duplicates @ mid storm + 2 effluent + 2 duplicates upon discharge from system] = 12		
Total Sample Bottles for 12 events	144		
Sample transport and storage	Use standard protocols		
Documentation and Reporting	Maintain log book with sample dates, times, weather conditions, temperature, rainfall depth, influent and effluent flow depths and flow rates, time at which inflow begins, time at which outflow begins, lab methods, photographic documentation, observations of water flow paths and function, and results.		
Lab Analysis Protocols*			
TSS	Standard Methods for the Examination of Water and Wastewater (APHA, 2005)		
Nitrate	Standard Methods for the Examination of Water and Wastewater (APHA, 2005)		
Phosphate	Standard Methods for the Examination of Water and Wastewater (APHA, 2005)		
BOD	Standard Methods for the Examination of Water and Wastewater (APHA, 2005)		
Conductivity	Meter		

Results & Conclusions

Rank	Date	Max Temp (F)	Min Temp (F)	Max Wind Speed (mi/hr)	Precipitation (Inches)
1	12/22/2013	65	56	21	2.80
2	11/26/2013	44	30	17	2.59
3	9/21/2013	69	61	24	1.39
4	1/11/2014	56	42	23	1.38
5	10/7/2013	65	53	24	1.12
6	9/25/2013	63	59	8	1.11
7	12/14/2013	41	35	8	0.85
8	2/12/2014	29	22	9	0.78
9	12/29/2013	53	37	22	0.77
10	2/21/2014	63	39	25	0.69
11	12/21/2013	65	52	21	0.65
12	2/3/2014	58	37	26	0.64
13	12/6/2013	70	50	25	0.58
14	12/9/2013	53	34	17	0.54
15	1/10/2014	50	34	9	0.52
16	3/16/2014	48	39	14	0.50

Construction Performance

18 Months

30 Months

Segmental Block Wall

Gabion Performance

Cost Comparison

Component	Segmental Block Wall System	Gabion Weep Wall System	Other
Bioretention Components	\$4,7 1 0	\$4,880	
Retaining Wall Structure Components	\$10,420	\$13,060	
Total	\$15,130	\$17,940	
Bioretention Area (sf)	240	240	
Unit Cost for Bioretention Only (\$/SF)	\$20/SF	\$20/SF	
Unit Cost with Retaining Structures (\$/SF)	\$63/SF	\$75/SF	
Monitoring Related Components			\$8,590
Education Signage			\$1,000
Total			\$42,660

Conclusions

- Bioretention feasible on steep slopes (tested up to 53%)
 Both designs valid
- 3) Earth retention structure cost is significant (~70% total)
- 4) Segmental block wall more flexible/cost-effective
- 5) Gabion wall cost about 25% higher
- 6) Incorporate plantings for aesthetics
- 7) Geotechnical analysis required
- 8) Proper water management through system is critical (use underdrains, media with adequate infiltration rate, impermeable liners, and proper wall design)
- 9) Most applicable sites:
 - Space is extremely limited for other SCMs
 - Retaining wall already planned
 - Shorter slopes
 - Compare costs to other ultra-urban SCMs (underground storage, bioretention planters, etc.)

Stormwater Mycelium Filter Pilot Project

Why This Project?

Opportunity Technique used in + Pacific Northwest

Need Simple Practices for Agricultural Runoff

Project Goals

1) Test the effectiveness of mycelium filters for removing common water-quality pollutants from agricultural stormwater runoff.

2) Provide monitoring results to potentially facilitate widespread adoption as a stormwater BMP.

Research

Mycelium "vegetative part of a fungus, consisting of a mass of branching, thread-like hyphae."

Mycoremediation

- Using fungi to degrade or sequester pollutants
- Fungal mycelium for filtering stormwater
- Mycofiltration coined by Paul Stamets
- Pilot testing in Washington State

Mycelium shown to remove:

- Pathogens (protozoa, bacteria, viruses)
- Silt and sediment
- Chemical toxins (including hydrocarbons)

Mushroom Mycelium Filter

Oyster Mushroom

• Petroleum Hydrocarbons from 20,000 PPM to 200 PPM in 8 Weeks

Source: P. Stamets

Example Applications

- Inoculate wood chips with mycelium
- Place wood chips in burlap sacks (or trenches)
- Secure burlap sacks in path of stormwater
- Other media and methods

Design

Project Site

System Layout

Pilot System Design

Plan View

NH₃ - N

Results

Phase II

Additional Research

Bench Scale Study

- A-B Technical Community College
- King Stropharia Mushroom Mycelium
- 93% Reduction in E. coli vs. Control Filter

Bioretention with Mycelium

PNWD-4054-1

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Field Demonstration of Mycoremediation for Removal of Fecal Coliform Bacteria and Nutrients in the Dungeness Watershed, Washington

SA Thomas LM Aston DL Woodruff VI Cullinan

Final Report March 2009

Mycorrhizal Fungi

Without

Source: www.mycorrhizae.com

With

Mycorrhizal Fungi

Increases root surface area by 100-1000x

Increases nutrient uptake

Enhances plant growth and disease-resistance

Source: www.mycorrhizae.com

Bioretention with Mycelium

Conclusions

- 1) Delivery method with mycelium filter bags with wood chips not consistently reliable.
- 2) Mycelium growth peaked within 2 months; replacement necessary in less than five months.
- 3) Isolated wood chip bag system may be too sensitive to provide consistent treatment benefits.
- 4) Decreased temperatures result in dormancy of the mycelium and decreased treatment effectiveness.
- 5) Likely to require excessive monitoring and maintenance (not low cost/low maintenance).
- 6) Larger storms may bypass the bag/berm system.
- 7) Evidence that filter bags may be accumulating pollutants and fostering the growth of bacteria.
- 8) Bench scale test successful; King Stropharia mycelium highly effective at removing E. coli.

Recommendations

Consider and apply eco-mimicry.
Integrate mycelium into proven natural vegetated soil-based stormwater treatment systems.

3) Design systems which create the conditions for mycelium to thrive (moisture, food, temp)

- 4) Consider the use of mycorrhizal fungi in stormwater treatment systems.
- 5) Consider the use of mycorrhizal fungi in restored riparian buffers.

6) Develop plant and tree guilds with mycorrhizal fungi appropriate for riparian zones

Thank you.

TIM ORMOND, P.E. 828.989.8075 tormond@hydrocycle-eng.com

Protecting Water Resources: NCSU Resources & Research

Mitch Woodward Area Spec. Agent – Watersheds & Water Quality NCSU Cooperative Extension

Meet the NCSU Stormwater Team.....

- <u>Campus -</u>
 - Teaching
 - Research
- <u>County</u>-Extension/ Outreach:
 - Demonstration
 - Teaching

One Goal - Accelerate the Adoption of Solutions!!!

Goals of Low Impact Development

- Reduce impervious surfaces
- Retain runoff on-site
- Promoting infiltration and evapotranspiration

• Replicating pre-development hydrologic conditions as closely as possible

- Davis, 2005

1 inch of rainfall on 1 sqft = 0.63 gallons*

*Note – We get 45 – 50 Inches of rainfall / yr

Pittsboro Rain Garden Certification October 2014

NC STATE UNIVERSITY

One of the oldest

continuous

America,

long-term

cooperation between the

University of

USDA Forest

Service.

Georgia and the

environmental

Coweeta is a

studies in North

centerpiece of a

Coweeta Hydrologic Laboratory

A&T State University COOPERATIVE EXTENSION Empowering People • Providing Solutions Bis & Age

Pittsboro Rain Garden Certification October 2014

NC STATE UNIVERSITY

For Example:

BIORETENTION HYDROLOGY:

Outflow (Drainage)	Infiltration	ET
50%	40%	10%

COWEETA (PRE-DEV.) HYDROLOGY:

Runoff	5%
Evapotranspiration	50%
Infiltration	45%
Shallow Interflow	43%
Deep Seepage	2%
	Pittsboro Rain G

Empowering People · Providing Solutions

Pittsboro Rain Garden Certification October 2014

OK, so what works?

What can we do to make things better?

SCM Benefits

- Determine benefits of SCMs for:
 - TN and TP removal
 - Streambank protection
 - Stream temperature
 - Removal of bacteria
 - Annual runoff treated
- Rated either:
 - Excellent, Good, Fair, or Poor
 - Based on previous research

https://stormwater.bae.ncsu.edu/

SCM Crediting Document

Sarah Waickowski, E.I.

https://stormwater.bae.ncsu.edu/

SCM Workshops: The 3 S's

Trainings on Practices That Slow that Water Down, Spread it Out, Soak it In!

What Can be Done?

- SCM Inspection & Maintenance
- Downspout Disconnection
- Bioretention Raingardens
- Water Harvesting
- Stream Repair
- MDC Criteria + Trainings

Stormwater BMP Inspection & Maintenance

NCSU BMP Inspection and Maintenance Certification

Overview/Main Certification Description Upcoming Classes and Registration Information Typical Agenda Sample Powerpoint Meet the Instructors List of Certified Professionals

Why is Stormwater BMP Inspection and Maintenance Needed?

Communities across the State of North Carolina must manage rainfall that runs off roads, streets and parking lots. This runoff is called stormwater. To manage stormwater, many treatment devices, called BMPs, have been built. These devices include: wet retention ponds, bioretention areas, stormwater wetlands, permeable pavement, and level spreaders. *BMPs must have annual, and sometimes more frequent, maintenance to perform as intended.* Maintenance includes hydrologic and water quality function, aesthetic and human health concerns. Some communities are considering hiring contractors to do this work, but it is a specialized area, making education and training important before you begin. As a result of his training you will:

- · Understand stormwater, how it affects water quality, and regulations associated with it
- · Understand stormwater management devices used in North Carolina and how they function
- · Understand inspection and maintenance requirements of each stormwater practice

About the Training

This workshop offers 7 PDHs (professional development hours) for professional engineers and surveyors, as authorized by the NC Board of Examiners for Engineers and Surveyors. Other professionals may appeal to their respective boards to obtain professional education credits. All participants who pass an examination at the end of the course will be certified by NC State Cooperative Extension. Certificates of Completion will be U.S. mailed to all attendees upon the <u>posting of Exam</u> <u>Results.</u>

NCSU-BAE is also a registered provider of continuing eduction for AICP and ASLA.

Descriffedtion

What We Saw: Cary Stormwater BMPs (2007)

- Approximately 425 BMPs in Cary
- According to one of Cary's inspectors: Timothy Grady, RLA:
- 95% of BMPs failed initial inspection as they require repairs
- Most repairs are maintenance related: erosion, trash removal, tree removal

Enter the...BMP Inspection & Maintenance Certification

Has it Worked? Cary BMPs... (now) ~ 95% pass, as owners better appreciate value of maintenance after investing in repairs...

It Works!

- Over 3500 Certified
- Teaching how and why stormwater BMPs work
- Specialized maintenance program for stormwater BMPs developed
- Students' have adopted practices and are incorporating concepts into their designs / maintenance schedules

Stormwater Engineering

Bioretention / Rain Garden Research: They Work!

Bill Hunt, Ph.D., PE **Biological & Agricultural Engineering NC State University**

www.bae.ncsu.edu/stormwater
NC STATE UNIVERSITY

Where can you find Bioretention/ Rain Gardens?

www.bae.ncsu.edu/stormwater

Huntersville, NC - Residential

Rain Gardens Integrated throughout - Seattle

Filterra Bioretention System – "Ready Made" Rain Garden

"We Bring Engineering to Life"

NC DOT - Transportation

Birmingham, AL

Parking Lot Medians & Perimeters

Apex Town Hall

BIS & Agy E N G I N E E R I N G

Pittsboro Rain Garden Certification October 2014

NC STATE UNIVERSITY

Siler City Town Center

EXTENSION

Pittsboro Rain Garden Certification October 2014

NC STATE LINUVERSITY

NC STATE UNIVERSITY

Mimic Riparian Buffer Conditions

BAE Stormwater Engineering Group

"We Bring Engineering to Life"

NC STATE UNIVERSITY

Take Home Point

- From a Long Term Hydrology Perspective, Bioretention Cells "Convert" Lots of Runoff to Infiltration & Evapotranspiration
- Often more than 50%
- Depends on Several Factors
 - Underlying Soil
 - Media Volume & Type
 - Relative Surface Area

Take Home Points: Bioretention...

- Improve Hydrology
 - Modest Peak Flow Mitigation
 - Long-term Hydrology Balance
 - Leads to Pollutant Load Reduction
- Reduce Pollutant Concentrations / Release Low Pollutant Concentrations
 - TSS
 - Metals & Hydrocarbons
 - TP & TN
 - Bacteria

BAE Stormwater Engineering Group

But, must be careful with Media Selection.

"We Bring Engineering to Life"

Consider IWS!

Bioretention / Raingarden Workshops

www.bae.ncsu.edu/ stormwater

Trainings for Professionals: Rain Garden Certification

- Site Selection
- Design
- Proper Plants
- Sizing & Installation Options
- Maintenance Considerations
- > 400 Professionals Trained & Certified

CAUTION! Rain Garden Under Construction YOUTH PARTNER PROJECT

'Downspout Disconnection': Slow it down, spread it out, soak it in.

to Work

Is this a good thing?

Can be simple as protecting & maintaining a natural area during construction to receive runoff

Study of Four Homes in Durham, NC (8 Downspouts Total) Jan 22 – Oct 8, 2013 Data

		Infiltration			Loading	Bulk	Volume
	Study Design	Rate	Slope	Length	Ratio	Density	Reduction
Site	Factor	(in/h)	(%)	(ft)	(n:1)	(g/ cm3)	(%)
1A	τ	.7	6.6	15	9.6	1.39	59
1B	Length	.7	5.2	30	1.4	1.39	72
2A	т (1	.5	6	5	15.0	1.67	76
2B	Length	.4	5.5	10	7.5	1.66	76
3A	Loading	13.9	6.6	12	3.0	1.23	92
3B	Ratio	13.9	6.6	12	6.3	1.23	73
4A	01	.3	27	12	4.6	1.53	62
4B	Slope	2.7	4.8	12	5.0	1.34	99

Stabilizing and Protecting Streambanks:

- Backyard Stream Repair Workshops -

NC STATE UNIVERSITY

Department of Biological and Agricultural ENGINEERING

Home	Degrees	Tr	aining & Credit	Alumni				
			BAE Home > wor	kshops				
Training & Credit		Backyard Stream Repair Workshops						
Training & Credit Overview		This workshop is sponsored by <u>NC State University</u> , and <u>NC Cooperative Extension</u> .						
Distance Education		NC STATE UNIVERSITY						
Workshops				Empowering People - Providing Solutions				
Graduate Education		About the Workshop						
Profess Develoj (PDH)	Professional Development Hours (PDH)		Learn how to stabilize your backyard stream, improve the natural environment, and enhance your property. Learn about causes of streambank erosion and how to use native plants to create a healthy streamside environment. Participate "hands-on" in enhancing an eroding streambank using grading, matting, and various natural plants at a local stream.					
		Attendees will have the opportunity to watch, ask questions, and even plant trees and shrubs to stabilize and beautify a						

streambank. Scroll down to the bottom of this page for a list of resources.

Stream Repair Workshops

6 Weeks After Installation

Raleigh

Innovative Rainwater Harvesting Design & Construction:

Internet Gateway (Powered by ioBridge)

Cisterns

Overflows from Tanks

Automatic Drain Valve

Irrigation Pump

Geosyntec[▷]

Discharge Location

Tryon Palace – Dashboard System Behavior Week of 4/5/2012 11:52 AM

Geosyntec[▶]

NC STATE UNIVERSITY

Hurricane Sandv (10/29/12)

Decision Analysis On Cistern Past 24 Hours. Latest record at 10/29/2012 6:26:22 AM

export | dates..

Temperature/ Thermal Load Mitigation Provided by Stormwater BMPs

Stormwater Engineering

NC STATE UNIVERSITY

William F. Hunt, Ph.D., PE Biological & Agricultural Engineering NC State University www.bae.ncsu.edu/stormwater

NC Lies along the Southern Extent of Native Trout Ranges

Thanks to our Mountains

Extent of Brook Trout Range

Trout in North Carolina

- NC contains roughly 4,000 miles of streams capable of supporting trout
- Roughly 1.3 million people fish in NC, spending over \$1 billion
- Nationwide, anglers spend a combined 83 million days fishing for trout
- Most NC trout prefer water temperatures between 40-70°F

Monitoring Results

 \mathbb{Z}

Site Locations

North Carolina

the second with the

Brevard Bloretention 1

Storm Event Temperature Profile

◆ INL ■ 7.60UT ▲ 15.20UT

NC STATE UNIVERSITY

Monitoring Summary

- BMPs can (will) contribute to thermal pollution
- Modifications to wetland and wet pond can reduce thermal impact while maintaining other water quality benefits
- Bioretention & LS-VFS able to reduce runoff temperature and volume
- Infiltration throughout the watershed may be best management strategy

SCM Benefits

- Determine benefits of SCMs for:
 - TN and TP removal
 - Streambank protection
 - Stream temperature
 - Removal of bacteria
 - Annual runoff treated
- Rated either:
 - Excellent, Good, Fair, or Poor
 - Based on previous research

SCM Crediting Document

Sarah Waickowski, E.I.

SCM Crediting Document

North Carolina Stormwater Control Measure Credit Document • Can find document at: https://deq.nc.gov/sw-bmp-manual

Stormwater Design Manual

PUBLIC NOTICE

Draft Stormwater Control Measure Credit Document

Purpose of Document

- Improve clarity and consistency of SCM crediting – Allow for better comparison between SCMs
- Facilitate credit updates using available research
- Meet goals of various state-wide stormwater programs

Purpose of Document

- Stakeholder meetings with designers, municipal stormwater officials, universities
 - NCDEQ and NCSU drafted document with stakeholder guidance

Big&

NC ST		Percent Annual			
	SCM	Runoff Treated if 100% Sized			
	Bioretention per MDC	94			
	Bioretention per MDC but without IWS	94			
	Bioretention with design variants per Hyper Tool	Tool Output			
	Infiltration per MDC	84			
	Permeable pavement (infiltration) per MDC	84			
	Permeable pavement (detention, unlined) per MDC	84			
	Permeable pavement (detention, lined) per MDC	84			
	Permeable pavement with design variants per Hyper Tool	Tool Output	0 4 -		
https://st	ttps://stormwater.bae.ncsu.edu/				

SCM	Percent Annual Runoff Treated if 100% Sized
Wet pond per MDC	84
Wet pond per MDC with ≥ 5% covered by FWI	84
Stormwater wetland per MDC	84
Sand filter (open) per MDC	90
Sand filter (closed) per MDC	90
Rainwater harvesting per MDC	85
Green roof per MDC	100
DIS per MDC	90

SCM	Percent Annual Runoff Treated if 100% Sized
LS-FS per MDC	90
LS-FS with Virophos sand added to filter strip	90
Pollutant removal swale with dry conditions	90
Pollutant removal swale with wet conditions	90
Dry pond per MDC	84
StormFilter per MDC with PhosphoSorb media™	95

Bie&Age

SCM	Percent Annual Runoff Treated if 100% Sized
LS-FS per MDC	90
LS-FS with Virophos sand added to filter strip	90
Pollutant removal swale with dry conditions	90
Pollutant removal swale with wet conditions	90
Dry pond per MDC	84
StormFilter per MDC with PhosphoSorb media™	95

Bie&Age

SCM	EMC _{Effluent} (mg/L)	
SCIVI	TN	TP
Bioretention per MDC	0.58	0.12
Bioretention per MDC but without IWS	1.20	0.12
Bioretention with design variants per Hyper Tool	0.58/1.20	0.12
Infiltration per MDC	0	0
Permeable pavement (infiltration) per MDC	0	0
Permeable pavement (detention, unlined) per MDC	1.08	0.05
Permeable pavement (detention, lined) per MDC	1.08	0.05
Permeable pavement with design variants per the Hyper Tool	1.08	0.05

SCM	EMC _{Effluent} (mg/L)	
SCIVI	TN	TP
Wet pond per MDC	1.22	0.15
Wet pond per MDC with ≥ 5% covered by FWI	0.85	0.09
Stormwater wetland per MDC	1.12	0.18
Sand filter (open) per MDC	1.33	0.12
Sand filter (closed) per MDC	1.33	0.12
Rainwater harvesting per MDC	Custom based on water usage	
Green roof per MDC	2.44	0.76
DIS per MDC	2.44	0.76

SCM	EMC _{Effluent} (mg/L)	
30W	TN	TP
LS-FS per MDC	1.04	0.19
LS-FS with Virophos sand added to the filter strip	0.87	0.10
Pollutant removal swale with dry conditions	1.10	0.14
Pollutant removal swale with wet conditions	0.82	0.11
Dry pond per MDC	1.65	0.66
StormFilter per MDC with PhosphoSorb media [™]	0.48	0.03

Stormwater Finance: Trends and Emerging Issues

WNC Stormwater Summit February 22, 2017 Asheville, NC

Carol Rosenfeld

Environmental Finance Center at The University of North Carolina, Chapel Hill

www.efc.unc.edu

Dedicated to enhancing the ability of governments and other organizations to provide environmental programs and services in fair, effective, and financially sustainable ways through:

Applied Research

2

- Teaching and Outreach
- Program Design and Evaluation

UNC SCHOOL of GOVERNMENT

How you pay for it matters

INTRODUCTION

3

Capital Wanted

U.S. communities are facing a total of \$106 billion in needed stormwater management and combined sewer correction upgrades or improvements.

American Rivers et al. 2012. Banking on Green: A Look at How Green Infrastructure Can Save Municipalities Money and Provide Economic Benefits Community-Wide.

Potential capital (revenue) sources

- Cash / pay as you go rate or tax payers
- Property tax all tax paying property owners and/or their tenants (includes district taxes)
- Sales tax shoppers
- Utility fees all eligible property owners and/or their tenants
- Plan review/inspection fees property developers
- Property tax assessments property owners
- Impact fees / nutrient offset fees property developers
- **Mitigation funds** off-site property developers
- **Grants** federal or state tax payers

Potential capital sources, cont.

- Bond market –
 3.5 to 5.5% funds
 15 to 25 years
- Bank loans –
 3.5 to 7% funds
 10 to 20 years

State revolving loan funds – Small pots of grants and loans
 0 to 2%
 20 years

Evolution of revenue sources

- 1. General tax revenue, cover what can for management on public land
- 2. Regulations -> private property projects
- 3. Offset fee programs / impact fees
- 4. Establish enterprises and stormwater fees to generate revenue
- 5. Rebates / cost-share programs
- 6. Fee credits for on-site improvements
- 7. Loans
- 8. Tax incentives
- 9. Trading
- 10. Property assessment backed (e.g. PACE-like)

NC STORMWATER FEES

8

NC stormwater fees

- Nine out of ten largest cities in North Carolina have utilities (34 of 50 largest cities)
- Total revenue reported for 63 municipal* utilities in 2015 was \$182,313,937
- Total revenue reported for 56 municipal utilities in 2010 was \$138,949,938
- * Slight underestimate since reporting information not complete for several municipalities with storm water utilities

Source: Analysis prepared by the EFC using self reported information submitted to the Local Government Commission

Monthly Residential Stormwater Fees in North Carolina at 2,455 sq. ft. of impervious surface

Representative Charge for Single Family Residential (per 2,455 sq. ft.)

VIRONMENTAL FINANCE CENTER

11
What's "normal" for monthly stormwater fees?

Median residential rate (at 2,455 sq ft) = \$4.00

\$1.63 per 1,000 sq ft of impervious surface

ENVIRONMENTAL FINANCE CENTER

Stormwater fee revenue vs. other revenue sources for 63 municipalities reporting utility fees in 2015

\$182,313,937

- Total property tax: \$1,730,008,002
- Total stormwater fees:
- Total solid waste fees: \$146,039,610
 (Total reported for all municipalities = \$224,792,896)
- Total water/wastewater fees: \$1,380,988,150
 (Total reported for all municipalities = \$2,019,495,974)

Source: Analysis prepared by the EFC using self reported information submitted to the Local Government Commission

RALEIGH'S QUALITY COST SHARE PROGRAM

Raleigh's stormwater quality cost share program

- Improve quality of stormwater runoff by sharing the cost of small scale distributed stormwater control projects with property owners
- City pays 90% of 'acceptable cost' in priority water quality target areas
- 75% in other areas

For permeable pavement:

Acceptable cost =

Total cost of implementing project – Cost of installing conventional, non-pervious pavement (same dimensions, same location)

Source: City of Raleigh, North Carolina

https://www.raleighnc.gov/services/content/PWksStormwater/Articles/StormwaterQualityCostShareProgram.html

Eligible projects

	Project Benefits				
Type of Stormwater Project (number of projects)	Enhance landscapes	Lower water bills	Lower heating/ cooling costs	Replenish groundwater	Healthier Streams /lakes
Rainwater harvesting and beneficial water use (11)		~			~
Bioretention devices and rain gardens (3)	~			~	~
Stormwater wetlands	~			~	~
Green roofs (2)			~		~
Infiltration devices				~	~
Permeable pavers and permeable pavements (3)				~	~
Removing impervious surfaces ("depaving")	~			~	~
Restoring stream buffers (1)	~			~	~
Stream restoration and shoreline restoration (1)	~				~

These project types have been and are expected to remain the most popular.

Source: City of Raleigh, North Carolina

https://www.raleighnc.gov/services/content/PWksStormwater/Articles/StormwaterQualityCostShareProgram.html

Completed Projects

Green roof on park facility

(7,500 sq. ft.)

Residential rain garden

(175 sq. ft.)

Source: City of Raleigh, North Carolina

https://www.raleighnc.gov/services/content/PWksStormwater/Articles/CompletedQualityCostShareProjects.html

Continue the Discussion

http://www.efc.sog.unc.edu/programs/stormwater-wetlands-and-watersheds

Subscribe to our Environmental Finance Blog: <u>Efc.web.unc.edu</u>

SEARCH RESULTS: "SIX " (PAGE 1 OF 4)

Carol Rosenfeld crosenfeld@sog.unc.edu

Environmental Finance Center at the University of North Carolina School of Government, Knapp-Sanders Building CB #3330 Chapel Hill, NC 27599-3330 USA

www.efc.unc.edu